Back to Documentation

Vector Embeddings API

Guide to using Embeddings interface, text vectorization, semantic search applications

Code Examples

// Create text embedding vectors
const response = await openai.embeddings.create({
  model: "text-embedding-ada-002",
  input: "Your text here",
});

const embedding = response.data[0].embedding;
console.log('Vector dimensions:', embedding.length);

// Use vectors for similarity calculation
function cosineSimilarity(vec1, vec2) {
  const dotProduct = vec1.reduce((sum, a, i) => sum + a * vec2[i], 0);
  const norm1 = Math.sqrt(vec1.reduce((sum, a) => sum + a * a, 0));
  const norm2 = Math.sqrt(vec2.reduce((sum, a) => sum + a * a, 0));
  return dotProduct / (norm1 * norm2);
}

Getting Started

Complete integration in 5 minutes

Best Practices

遵循推荐的Develop模式

技术support

获取专业help