Guide to using Embeddings interface, text vectorization, semantic search applications
// Create text embedding vectors
const response = await openai.embeddings.create({
model: "text-embedding-ada-002",
input: "Your text here",
});
const embedding = response.data[0].embedding;
console.log('Vector dimensions:', embedding.length);
// Use vectors for similarity calculation
function cosineSimilarity(vec1, vec2) {
const dotProduct = vec1.reduce((sum, a, i) => sum + a * vec2[i], 0);
const norm1 = Math.sqrt(vec1.reduce((sum, a) => sum + a * a, 0));
const norm2 = Math.sqrt(vec2.reduce((sum, a) => sum + a * a, 0));
return dotProduct / (norm1 * norm2);
}Complete integration in 5 minutes
遵循推荐的Develop模式
获取专业help