DALL-E 3 Image Generation Tutorial
OpenAI's latest image generation model, create stunning AI artworks
Ultra High Quality
HD high-definition output
Style Control
Natural/Vivid
Strong Understanding
Precise prompt understanding
Multiple Sizes
3 aspect ratio options
1. Basic Image Generation
Getting Started
import openai
client = openai.OpenAI(
api_key="your-api-key",
base_url="https://api.n1n.ai/v1"
)
# Basic image generation
response = client.images.generate(
model="dall-e-3",
prompt="A cute cartoon cat sitting on the moon, surrounded by stars, cyberpunk style",
size="1024x1024", # 1024x1024, 1024x1792, 1792x1024
quality="hd", # standard or hd
n=1 # DALL-E 3 only supports n=1
)
image_url = response.data[0].url
print(f"Generated image URL: {image_url}")
# Advanced parameter control
response = client.images.generate(
model="dall-e-3",
prompt="Professional commercial photography: A delicate latte coffee, wooden desktop, soft morning light, depth of field effect",
size="1792x1024", # Horizontal high resolution
quality="hd",
style="natural", # natural or vivid
response_format="b64_json" # Return base64 encoding
)
# Save base64 image
import base64
from PIL import Image
from io import BytesIO
if response_format == "b64_json":
image_data = base64.b64decode(response.data[0].b64_json)
image = Image.open(BytesIO(image_data))
image.save("generated_image.png")2. Prompt Engineering
High-Quality Prompt Building
# DALL-E 3 Prompt Engineering
class DallE3PromptBuilder:
"""Build high-quality DALL-E 3 prompts"""
def __init__(self):
self.prompt_parts = []
def add_subject(self, subject: str):
"""Add subject"""
self.prompt_parts.append(f"Subject: {subject}")
return self
def add_style(self, style: str):
"""Add artistic style"""
styles_map = {
"realistic": "photorealistic, high detail, professional photography",
"anime": "anime style, manga aesthetic, cel shading",
"oil_painting": "oil painting, impressionist, thick brushstrokes",
"watercolor": "watercolor painting, soft edges, flowing colors",
"3d_render": "3D rendered, octane render, ray tracing",
"pixel_art": "pixel art, 8-bit style, retro gaming aesthetic"
}
self.prompt_parts.append(styles_map.get(style, style))
return self
def add_lighting(self, lighting: str):
"""Add lighting effects"""
self.prompt_parts.append(f"Lighting: {lighting}")
return self
def add_composition(self, composition: str):
"""Add composition"""
self.prompt_parts.append(f"Composition: {composition}")
return self
def add_quality_tags(self):
"""Add quality tags"""
quality_tags = [
"masterpiece",
"best quality",
"highly detailed",
"sharp focus",
"professional"
]
self.prompt_parts.extend(quality_tags)
return self
def build(self) -> str:
"""Build final prompt"""
return ", ".join(self.prompt_parts)
# usingExample
prompt_builder = DallE3PromptBuilder()
prompt = (prompt_builder
.add_subject("a majestic dragon perched on a mountain peak")
.add_style("3d_render")
.add_lighting("dramatic sunset lighting, golden hour")
.add_composition("rule of thirds, dynamic angle")
.add_quality_tags()
.build())
print(f"Optimized prompt: {prompt}")
# Batch generate different styles
def generate_style_variations(base_prompt: str):
styles = ["natural", "vivid"]
sizes = ["1024x1024", "1024x1792", "1792x1024"]
results = []
for style in styles:
for size in sizes:
response = client.images.generate(
model="dall-e-3",
prompt=base_prompt,
size=size,
style=style,
quality="hd"
)
results.append({
"style": style,
"size": size,
"url": response.data[0].url
})
return results3. Advanced Application Scenarios
Commercial Application
# Advanced use cases
class DallE3Applications:
def __init__(self, api_key: str):
self.client = openai.OpenAI(api_key=api_key)
def generate_product_mockup(self, product: str, context: str):
"""Product rendering generation"""
prompt = f"""
Professional product photography of {product}.
Context: {context}
Style: Clean, minimalist, high-end commercial photography
Lighting: Soft studio lighting with subtle shadows
Background: Simple gradient or solid color
Focus: Sharp focus on product with slight depth of field
"""
response = self.client.images.generate(
model="dall-e-3",
prompt=prompt,
size="1792x1024",
quality="hd",
style="natural"
)
return response.data[0].url
def create_storyboard(self, scenes: list):
"""Create storyboard"""
storyboard = []
for i, scene in enumerate(scenes):
prompt = f"""
Storyboard frame {i+1}:
{scene['description']}
Style: Professional storyboard illustration, pencil sketch style
Composition: {scene.get('shot_type', 'medium shot')}
Characters: {scene.get('characters', 'N/A')}
"""
response = self.client.images.generate(
model="dall-e-3",
prompt=prompt,
size="1024x1024",
quality="standard"
)
storyboard.append({
"scene": i+1,
"image_url": response.data[0].url,
"description": scene['description']
})
return storyboard
def generate_logo_concept(self, brand_name: str, industry: str, values: list):
"""Logo concept design"""
prompt = f"""
Modern logo design for '{brand_name}'
Industry: {industry}
Brand values: {', '.join(values)}
Style: Minimalist, scalable, memorable
Design: Vector-style, clean lines, professional
Color scheme: Suitable for both light and dark backgrounds
"""
response = self.client.images.generate(
model="dall-e-3",
prompt=prompt,
size="1024x1024",
quality="hd",
style="vivid"
)
return response.data[0].url
# Use case examples
app = DallE3Applications(api_key="your-key")
# 1. E-commerce product images
product_image = app.generate_product_mockup(
product="wireless headphones",
context="premium audio equipment for professionals"
)
# 2. Storyboard creation
scenes = [
{"description": "Hero enters ancient temple", "shot_type": "wide shot"},
{"description": "Close-up of mysterious artifact glowing", "shot_type": "close-up"},
{"description": "Hero running from collapsing temple", "shot_type": "action shot"}
]
storyboard = app.create_storyboard(scenes)
# 3. LogoDesign
logo = app.generate_logo_concept(
brand_name="TechNova",
industry="AI Technology",
values=["innovation", "simplicity", "future"]
)4. Best Practices
✨ Prompt Tips
- ✅ Describe subject, style, and lighting in detail
- ✅ Use professional terminology to improve quality
- ✅ Specify composition and viewpoint
- ✅ Add quality tags
⚙️ ParameterOptimize
- ✅ Use HD quality for final output
- ✅ Natural style is more realistic
- ✅ Vivid style is more artistic
- ✅ Choose appropriate size ratio