Python SDK Complete Integration Guide

Use Python to call the LLM API, integrate LangChain, LlamaIndex, AutoGPT, and more to build powerful AI applications.

Getting Started

1. Install SDK

pip install openai

2. Configure API

openai.api_key = "..."

3. Make a call

response = openai...

Code Examples

OpenAI official library

Use the OpenAI Python SDK to call the API

# Install OpenAI Python library
# pip install openai

import openai

# Configure API
openai.api_key = "YOUR_API_KEY"
openai.api_base = "https://api.example.com/v1"  # Replace with your actual API base

# Basic chat
response = openai.ChatCompletion.create(
    model="gpt-4o",
    messages=[
        {"role": "system", "content": "You are a helpful assistant"},
        {"role": "user", "content": "What is a decorator in Python?"}
    ],
    temperature=0.7,
    max_tokens=1000
)

print(response.choices[0].message.content)

# Streaming output
stream = openai.ChatCompletion.create(
    model="gpt-4o",
    messages=[{"role": "user", "content": "Write a poem about programming"}],
    stream=True
)

for chunk in stream:
    if chunk.choices[0].delta.get("content"):
        print(chunk.choices[0].delta.content, end="", flush=True)

Other language SDKs

🐍

Python

The most popular AI development language

Main libraries:

openailangchainllama-indextransformers
View tutorial →
📦

Node.js

JavaScript/TypeScript development

Main libraries:

openailangchain.jsai-sdk
View tutorial →
🐘

PHP

Quick web application integration

Main libraries:

openai-phporhanerday/open-ai
View tutorial →

Java

Enterprise-grade application development

Main libraries:

openai-javalangchain4j
View tutorial →
🐹

Go

High-performance backend service

Main libraries:

sashabaranov/go-openai
View tutorial →
🔷

C#/.NET

Microsoft ecosystem integration

Main libraries:

OpenAI-DotNetAzure.AI.OpenAI
View tutorial →

Popular framework integrations

Langchain

Framework for building LLM applications

Use cases:

RAG applicationsAgent systemsWorkflow orchestrationKnowledge base question answering

LlamaIndex

Framework for data connection and indexing

Use cases:

Documentation question answeringData analysisKnowledge graphSearch engine

AutoGPT

Autonomous AI agent

Use cases:

Task automationResearch assistantCode generationContent creation

Semantic Kernel

Microsoft AI orchestration framework

Use cases:

Enterprise applicationsPlugin systemMemory managementSkill combination

Best Practices

Error handling

  • • Implement retries with exponential backoff
  • • Catch and handle API exceptions
  • • Set reasonable timeouts
  • • Log errors for easier debugging

Performance optimization

  • • Use async calls to improve concurrency
  • • Implement request batching to reduce latency
  • • Cache frequent results to save cost
  • • Choose appropriate models to balance cost and performance

Security recommendations

  • • Store API keys in environment variables
  • • Do not hardcode secrets in code
  • • Implement access control and usage limits
  • • Validate and sanitize user inputs

Debugging tips

  • • Use detailed logs for API calls
  • • Monitor token usage
  • • Test edge cases and error scenarios
  • • Use the Playground for quick validation

FAQ

Q: How to handle "Rate limit exceeded" errors?

A: Implement retries with exponential backoff. You can use libraries like tenacity or backoff to handle retries automatically.

Q: How to reduce API call costs?

A: Use smaller models (like GPT-3.5-turbo), cache frequent results, optimize prompt length, and batch requests.

Q: How to handle long text exceeding token limits?

A: Use text splitting strategies, implement sliding window processing, or use models that support longer contexts like Claude.

Q: How to improve the quality of generated content?

A: Optimize prompts, use few-shot examples, adjust the temperature parameter, and implement output validation and post-processing.