GPT vs Claude Comprehensive Comparison
In-depth comparison of performance, cost, and use cases across popular LLMs to help you choose the best model.
Intelligence level
Reasoning and understanding
Response speed
Generation efficiency
Usage cost
Pricing and value
Security & compliance
Content safety controls
1. Model Capability Matrix
| Feature | GPT-4o | GPT-4o mini | Claude 3.5 Sonnet | Claude 3.5 Haiku |
|---|---|---|---|---|
| Context length | 128K | 128K | 200K | 200K |
| Response speed | Fast | Very fast | Medium | Very fast |
| Coding ability | Excellent | Strong | Strong | Medium |
| Creative writing | Strong | Medium | Excellent | Medium |
| Math reasoning | Excellent | Strong | Strong | Medium |
| Image understanding | Supported | Supported | Not supported | Not supported |
| Input price | $2.5/M | $0.15/M | $3/M | $0.25/M |
| Output price | $10/M | $0.6/M | $15/M | $1.25/M |
2. Performance Benchmarks
Test code
import time
import openai
import anthropic
# Performance benchmark comparison
class ModelBenchmark:
def __init__(self, openai_key, anthropic_key):
self.openai_client = openai.OpenAI(
api_key=openai_key,
base_url="https://api.n1n.ai/v1"
)
self.anthropic_client = anthropic.Anthropic(
api_key=anthropic_key,
base_url="https://api.n1n.ai/v1"
)
def test_response_time(self, prompt):
# Test GPT-4o
start = time.time()
gpt_response = self.openai_client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}],
max_tokens=500
)
gpt_time = time.time() - start
# Test Claude
start = time.time()
claude_response = self.anthropic_client.messages.create(
model="claude-3-5-sonnet-20241022",
messages=[{"role": "user", "content": prompt}],
max_tokens=500
)
claude_time = time.time() - start
return {
"gpt-4o": {"time": gpt_time, "response": gpt_response},
"claude-3.5": {"time": claude_time, "response": claude_response}
}εεΊιεΊ¦
- π₯ GPT-4o mini: ~0.8s
- π₯ Claude Haiku: ~0.9s
- π₯ GPT-4o: ~1.2s
- 4οΈβ£ Claude Sonnet: ~1.5s
Output quality
- π₯ GPT-4o: ζεΌΊζ¨η
- π₯ Claude Sonnet: ζδ½³εζ
- π₯ GPT-4o mini: εθ‘‘
- 4οΈβ£ Claude Haiku: εΊη‘δ»»ε‘
Cost-effectiveness
- π₯ Claude Haiku: ζδ½ζζ¬
- π₯ GPT-4o mini: θΆ ι«ζ§δ»·ζ―
- π₯ GPT-4o: η©ζζεΌ
- 4οΈβ£ Claude Sonnet: εζι¦ι
3. Intelligent Use Case Selection
Use-case matching code
# Intelligent model selection by use case
def select_model(task_type, requirements):
"""Recommend the best model based on task type"""
if task_type == "coding":
if requirements.get("quality") == "high":
return "gpt-4o" # Strongest coding capability
else:
return "gpt-4o-mini" # Cost-effective
elif task_type == "creative_writing":
if requirements.get("context_length", 0) > 100000:
return "claude-3-5-sonnet" # 200K context
else:
return "gpt-4o" # Balanced choice
elif task_type == "customer_service":
if requirements.get("cost") == "low":
return "claude-3-5-haiku" # Lowest cost
else:
return "gpt-4o-mini" # Fast response
elif task_type == "data_analysis":
return "gpt-4o" # Strong mathematical reasoning
elif task_type == "research":
return "claude-3-5-sonnet" # Deep analysis capability
return "gpt-4o-mini" # Default choiceBest for GPT series
- β Code development - strongest code understanding
- β Mathematical reasoning - complex calculations
- β Technical documentation - professional content
- β Image understanding - visual input analysis
- β API integration - rich ecosystem
Best for Claude series
- β Long text processing - 200K context
- β Creative writing - natural prose
- β Deep analysis - complex research
- β Content safety - strict controls
- β Academic research - rigorous writing
4. Cost Optimization Strategies
Cost calculator
# Cost calculator
class CostOptimizer:
# Pricing (per 1M tokens)
PRICING = {
"gpt-4o": {"input": 2.50, "output": 10.00},
"gpt-4o-mini": {"input": 0.15, "output": 0.60},
"claude-3-5-sonnet": {"input": 3.00, "output": 15.00},
"claude-3-5-haiku": {"input": 0.25, "output": 1.25}
}
@classmethod
def estimate_cost(cls, model, input_tokens, output_tokens):
"""Estimate API call cost"""
pricing = cls.PRICING[model]
input_cost = (input_tokens / 1_000_000) * pricing["input"]
output_cost = (output_tokens / 1_000_000) * pricing["output"]
return {
"model": model,
"input_cost": round(input_cost, 4),
"output_cost": round(output_cost, 4),
"total_cost": round(input_cost + output_cost, 4)
}π‘ Cost optimization tips
- β’ Use mini/haiku for development and testing
- β’ Balance time cost for batch tasks
- β’ Use caching to avoid duplicate calls
- β’ Choose dynamically by task complexity
- β’ Monitor usage and set budget alerts
5. Quick Selection Guide
Best overall capability β GPT-4o
Best for: complex reasoning, code generation, data analysis, image understanding
Best cost-performance β GPT-4o mini
Best for: daily tasks, batch processing, rapid prototyping, simple chats
Ultra-long context β Claude 3.5 Sonnet
Best for: long document analysis, creative writing, deep research, academic papers
Lowest cost β Claude 3.5 Haiku
Best for: customer support, content moderation, simple classification, basic tasks
6. Best Practices
π― Model selection strategies
- β Test with cheaper models first
- β Use the best model for critical tasks
- β Prefer Claude for long contexts
- β Prefer GPT for coding tasks
- β Build a model selection decision tree
β‘ Performance optimization tips
- β Set max_tokens appropriately
- β Use streaming output
- β Batch requests
- β Implement retry logic
- β Monitor response times