Intelligent Content Moderation: Safeguarding Your Platform

A content moderation system based on Large Language Models can understand context, identify hidden risks, and is more intelligent and accurate than traditional keyword filtering.

Moderation Dimensions

🚫 Violative Content

  • • Violence and Gore
  • • Pornography and Vulgarity
  • • Illegal Information
  • • Hate Speech

⚠️ Sensitive Information

  • • Personal Privacy
  • • Commercial Secrets
  • • False Information
  • • Politically Sensitive

📋 Quality Control

  • • Spam
  • • Advertising
  • • Duplicate Content
  • • Meaningless Text

Intelligent Moderation Implementation

class ContentModerator:
    """Intelligent Content Moderation System"""
    
    def __init__(self, llm_api):
        self.llm = llm_api
        self.categories = {
            'violence': 'Violent and gory content',
            'adult': 'Pornographic and vulgar content',
            'illegal': 'Illegal and non-compliant information',
            'hate': 'Hate speech and discrimination',
            'privacy': 'Personal privacy information',
            'spam': 'Spam and advertising information'
        }
    
    def moderate(self, content):
        """Moderate content"""
        prompt = f"""Please review the following content and determine if it contains any violations.

Content: {content}

Please analyze the following aspects:
1. Does it contain violent, pornographic, illegal, or other violative content?
2. Does it contain personal privacy or sensitive information?
3. Is it spam, advertising, or meaningless content?
4. Overall content quality score (1-10)

Return in JSON format:
{{
    "safe": true/false,
    "categories": ["violation categories"],
    "severity": "low/medium/high",
    "reasons": ["specific reasons"],
    "score": 1-10,
    "suggestion": "handling suggestion"
}}"""
        
        response = self.llm.generate(prompt, temperature=0.1)
        return json.loads(response)
    
    def batch_moderate(self, contents, parallel=True):
        """Batch moderation"""
        if parallel:
            # Parallel processing
            with ThreadPoolExecutor(max_workers=10) as executor:
                futures = [
                    executor.submit(self.moderate, content) 
                    for content in contents
                ]
                results = [f.result() for f in futures]
        else:
            # Serial processing
            results = [self.moderate(content) for content in contents]
        
        return results
    
    def real_time_filter(self, text_stream):
        """Real-time streaming moderation"""
        buffer = ""
        for chunk in text_stream:
            buffer += chunk
            
            # Check every 50 characters
            if len(buffer) > 50:
                result = self.quick_check(buffer)
                if not result['safe']:
                    # Interrupt immediately
                    return {
                        'blocked': True,
                        'reason': result['reason']
                    }
                buffer = buffer[-25:]  # Retain part for context
        
        # Final full check
        return self.moderate(text_stream.get_full_text())
    
    def custom_rules(self, content, rules):
        """Custom rule moderation"""
        violations = []
        
        for rule in rules:
            if rule['type'] == 'keyword':
                if rule['pattern'] in content.lower():
                    violations.append(rule['action'])
            elif rule['type'] == 'regex':
                if re.search(rule['pattern'], content):
                    violations.append(rule['action'])
            elif rule['type'] == 'ai':
                # Use AI to judge
                check = self.llm.generate(
                    f"Does the content {rule['description']}? {content}"
                )
                if "Yes" in check:
                    violations.append(rule['action'])
        
        return violations

Multi-level Moderation Process

1️⃣ Quick Pre-check

Keyword filtering + rule matching (millisecond level)

2️⃣ AI Intelligent Moderation

In-depth analysis by Large Language Models (second level)

3️⃣ Manual Review

Manual confirmation of suspected violative content

Moderation Performance Data

Accuracy Metrics

  • Accuracy96.5%
  • Recall94.2%
  • False Positive Rate<2%

Efficiency Metrics

  • Average Response Time<500ms
  • Daily Processing Volume1M+
  • Reduction in Manual Review85%

Industry Application Cases

Social Platforms

  • • User post moderation
  • • Comment filtering
  • • Private message monitoring
  • • Report handling

Content Platforms

  • • Article moderation
  • • Video subtitle detection
  • • Live stream chat filtering
  • • UGC content management

Build a Secure Content Ecosystem

Use an AI content moderation system to make your platform safer and healthier.

Start Using