AI Data Analysis Assistant: Let Data Speak
Delegate complex data analysis work to AI, automatically discover data patterns, and generate insight reports, enabling everyone to become a data analysis expert.
Core Features
📊 Automated Analysis
- • Data quality checks
- • Statistical feature extraction
- • Correlation analysis
- • Anomaly detection
💡 Insight Discovery
- • Trend identification
- • Pattern discovery
- • Causal inference
- • Predictive modeling
📈 Visualization
- • Smart chart recommendations
- • Interactive dashboards
- • Story-driven reports
- • Real-time updates
🎯 Business Recommendations
- • Optimization recommendations
- • Risk alerts
- • Opportunity identification
- • Actionable plans
Workflow
class DataAnalysisAI:
"""Intelligent Data Analysis Assistant"""
def analyze_dataset(self, df, business_context=""):
"""Comprehensive dataset analysis"""
# 1. Data overview
overview = self.data_overview(df)
# 2. Use LLM to understand data
data_understanding = self.llm.generate(f"""
Dataset information:
- Shape: {df.shape}
- Columns: {list(df.columns)}
- Data types: {df.dtypes.to_dict()}
- Sample data: {df.head().to_string()}
Business context: {business_context}
Please analyze:
1. Which business scenarios could this dataset support?
2. Which fields are most important?
3. What data quality issues may exist?
""")
# 3. Statistical analysis
stats = self.statistical_analysis(df)
# 4. Discover insights
insights = self.discover_insights(df, stats)
# 5. Generate report
report = self.generate_report(
overview, stats, insights, data_understanding
)
return report
def discover_insights(self, df, stats):
"""Discover data insights"""
insights = []
# Trend analysis
if self.has_time_column(df):
trends = self.analyze_trends(df)
insights.extend(trends)
# Correlation analysis
correlations = self.find_correlations(df)
insights.extend(correlations)
# Anomaly detection
anomalies = self.detect_anomalies(df)
insights.extend(anomalies)
# In-depth analysis with LLM
llm_insights = self.llm.generate(f"""
Based on the following statistics, discover business insights:
{json.dumps(stats, indent=2)}
Please provide:
1. 3-5 key findings
2. Potential business implications
3. Recommended follow-up analysis directions
""")
insights.append(llm_insights)
return insights
def generate_sql_query(self, question, schema):
"""Natural language to SQL"""
prompt = f"""
Database schema:
{schema}
User question: {question}
Please generate an SQL query.
"""
sql = self.llm.generate(prompt)
return sql
def explain_analysis(self, results, for_audience="business"):
"""Explain analysis results"""
if for_audience == "business":
prompt = f"""
Explain the following technical analysis results in business language:
{results}
Requirements:
1. Avoid technical jargon
2. Highlight business value
3. Provide actionable recommendations
"""
else:
prompt = f"""
Explain the analysis methods and results in detail:
{results}
Including:
1. Statistical methods used
2. Confidence in the results
3. Limitations
"""
return self.llm.generate(prompt)Real-World Example
Sales Data Analysis Example
📥 Input
"Analyze last quarter’s sales data and identify growth opportunities"
🤖 AI Analysis Process
- • Identify sales trends and seasonality
- • Analyze product category performance
- • Discover regional differences
- • Customer segmentation analysis
💡 Output Insights
- • "East China shows the highest growth potential; recommend increasing investment"
- • "New categories contributed 35% of growth; expand the assortment"
- • "Weekend sales account for 70%; optimize marketing timing"
Supported Data Sources
📊
Excel/CSV
🗄️
Databases
☁️
Cloud Platforms
🔌
APIs
Usage Impact
90%
Analysis time saved
3x
Number of insights discovered
85%
Decision accuracy improvement
Make Data Analysis Simple
No specialized skills required—the AI assistant helps you easily unlock the value of your data.
Start Analysis