LLM API Best Practices: Development Guide from Zero to Pro
This guide compiles LLM API development best practices and lessons learned to help developers avoid common pitfalls and build high-quality, high-performance AI applications.
Prompt Engineering Best Practices
Golden Rules for High-Quality Prompts
1. Clear and Specific Instructions
β Bad Example
write an article about AI
β Good Example
Please write an 800-word technical blog post Topic: How enterprises can use LLM API to improve efficiency Target readers: Technical decision-makers Include: 1) Application scenarios 2) ROI analysis 3) Implementation suggestions
2. Structured Output
const prompt = `Please analyze the following customer feedback and output JSON in the format below:
{
"sentiment": "positive/negative/neutral",
"category": "product/service/price/other",
"priority": "high/medium/low",
"summary": "Summary within 50 words",
"suggestions": ["Suggestion 1", "Suggestion 2"]
}
Feedback: ${feedback}`;3. Few-shot Learning
const prompt = `Classify each sentence into: Technical Issue / Account Issue / Suggestion
Examples:
Sentence: My API key is not working
Label: Account Issue
Sentence: Could you add a Python SDK?
Label: Suggestion
Sentence: The model response is very slow
Label: Technical Issue
Sentence: ${userInput}
Label:`;Cost Optimization Strategies
Practical Tips to Reduce API Costs
π Token Optimization
- β’Shorter prompts: Remove redundant descriptions
- β’Context compression: Keep only necessary history
- β’Limit output: Set the max_tokens parameter
π― Model Selection
- β’Tiered usage: Use smaller models for simple tasks
- β’Hybrid strategy: Route to different models
- β’Batch processing: Merge similar requests
Cost Monitoring Code Examples
class CostTracker:
def __init__(self):
self.usage = {"gpt-4": 0, "gpt-3.5": 0}
self.costs = {"gpt-4": 0.03, "gpt-3.5": 0.002}
def track(self, model, tokens):
self.usage[model] += tokens
cost = (tokens / 1000) * self.costs[model]
if cost > 0.1: # Single request exceeds $0.10
self.alert_high_cost(model, tokens, cost)
return costError Handling Best Practices
Build a Robust Error Handling Mechanism
Comprehensive Error Handling Example
async function callLLMAPI(prompt, retries = 3) {
const errors = [];
for (let i = 0; i < retries; i++) {
try {
const response = await llmClient.complete({
model: "gpt-4",
messages: [{ role: "user", content: prompt }],
temperature: 0.7,
timeout: 30000 // 30s timeout
});
// Validate response
if (!response.choices?.[0]?.message?.content) {
throw new Error("Invalid response format");
}
return response;
} catch (error) {
errors.push(error);
// Handle error types
if (error.code === 'rate_limit_exceeded') {
const waitTime = error.retry_after || Math.pow(2, i) * 1000;
await sleep(waitTime);
continue;
}
if (error.code === 'context_length_exceeded') {
// Compress context and retry
prompt = compressPrompt(prompt);
continue;
}
if (error.code === 'service_unavailable') {
// Fallback to backup model
return await fallbackModel(prompt);
}
// Non-retryable
if (['invalid_api_key', 'invalid_request'].includes(error.code)) {
throw error;
}
}
}
// All retries failed
throw new AggregateError(errors, 'All retries failed');
}Error Categories
- Retryable: Timeout, rate limiting, temporary service unavailability
- Degradable: Model unavailable, slow responses
- Fix required: Context too long, format errors
- Non-recoverable: Authentication failure, insufficient balance
Fallback Strategies
- β’ GPT-4 β GPT-3.5 β Claude
- β’ Complex prompts β Simplified prompts
- β’ Real-time generation β Cached results
- β’ API calls β Local model
Performance Optimization Tips
Speed Up Your Application
π Streaming
// Display generated content in real time
const stream = await openai.chat.completions.create({
model: "gpt-4",
messages: messages,
stream: true,
});
for await (const chunk of stream) {
process.stdout.write(
chunk.choices[0]?.delta?.content || ""
);
}πΎ Smart Caching
// Semantic similarity cache
const cache = new SemanticCache({
threshold: 0.95,
ttl: 3600
});
const cached = await cache.get(prompt);
if (cached) return cached;
const result = await llm.complete(prompt);
await cache.set(prompt, result);β‘ Concurrency Optimization
// Batch concurrent requests
const results = await Promise.all(
prompts.map(prompt =>
llm.complete(prompt)
)
);
// Limit concurrency
const results = await pLimit(5)(
prompts.map(p => () => llm.complete(p))
);Security Best Practices
Protect Your AI Application
π API Key Management
β Donβt do this
const API_KEY = "sk-xxxxx"; // Hardcoded git add . // Committed to repo
β Do this instead
// Use environment variables
const API_KEY = process.env.LLM_API_KEY;
// Or a secret manager service
const API_KEY = await secretManager.get('llm-key');π‘οΈ Input Validation and Filtering
function sanitizeInput(userInput) {
// Length limit
if (userInput.length > 1000) {
throw new Error("Input too long");
}
// Remove potential prompt injections
const forbidden = [
'ignore previous instructions',
'system:',
'```python'
];
for (const pattern of forbidden) {
if (userInput.toLowerCase().includes(pattern)) {
throw new Error("Invalid input detected");
}
}
// Content moderation
if (containsSensitiveContent(userInput)) {
throw new Error("Content policy violation");
}
return userInput;
}Monitoring and Debugging
Build a Complete Monitoring System
Key Metrics
- API response timeP95 < 3s
- Error rate< 0.1%
- Token usageReal-time tracking
- Cost consumptionHourly statistics
Logging Best Practices
logger.info('LLM API Request', {
requestId: uuid(),
model: 'gpt-4',
promptTokens: 150,
timestamp: Date.now(),
userId: user.id,
// Never log full prompts
promptHash: hash(prompt),
promptLength: prompt.length
});Development Workflow Tips
From Dev to Production
Prototyping
- β’ Use the Playground to test quickly
- β’ Record effective prompt templates
- β’ Evaluate different model performance
Testing & Optimization
- β’ Build a test dataset
- β’ A/B test different strategies
- β’ Optimize cost and performance
Production
- β’ Implement comprehensive error handling
- β’ Configure monitoring and alerts
- β’ Prepare fallback strategies
Common Pitfalls and Solutions
Pitfall: Over-reliance on a Single Model
Solution: Adopt a multi-model strategy and establish fallbacks to avoid single points of failure.
Pitfall: Neglecting Cost Control
Solution: Set budget caps, track usage in real time, and optimize prompt length.
Pitfall: Poor Context Management
Solution: Use a sliding window strategy, keep only relevant history, and clean context regularly.
Pitfall: Unstable Outputs
Solution: Lower the temperature, use structured outputs, and add validation logic.
Start Your Best Practices Journey
LLM API provides comprehensive documentation, code examples, and technical support to help you quickly master LLM API best practices and build stable, efficient, and secure AI applications.
Start Free Trial