LLM API Integration Development Guide: Quick Integration from Zero to One
This guide will help you quickly integrate LLM API into your applications, covering the complete process from environment configuration to production deployment.
Getting Started
1. Get API Key
- Register LLM API account
- Create application in console
- Generate API key
- Configure environment variables
# .env file LLM_API_KEY=your-api-key-here LLM_API_BASE_URL=https://api.llmapi.com/v1
Multi-language SDK Integration
Python SDK
# InstallSDK
pip install llm-api-sdk
# usingExample
from llm_api import Client
client = Client(api_key="your-api-key")
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello, how are you?"}
],
temperature=0.7,
stream=True
)
for chunk in response:
print(chunk.choices[0].delta.content, end="")JavaScript/TypeScript SDK
// InstallSDK
npm install @llm-api/sdk
// usingExample
import { LLMAPIClient } from '@llm-api/sdk';
const client = new LLMAPIClient({
apiKey: process.env.LLM_API_KEY,
});
async function generateText() {
const stream = await client.chat.completions.create({
model: 'gpt-4',
messages: [
{ role: 'user', content: 'Write a haiku about coding' }
],
stream: true,
});
for await (const chunk of stream) {
process.stdout.write(chunk.choices[0]?.delta?.content || '');
}
}Java SDK
// Maven dependencies
<dependency>
<groupId>com.llmapi</groupId>
<artifactId>llm-api-java</artifactId>
<version>1.0.0</version>
</dependency>
// usingExample
import com.llmapi.LLMAPIClient;
import com.llmapi.models.*;
LLMAPIClient client = new LLMAPIClient("your-api-key");
ChatCompletionRequest request = ChatCompletionRequest.builder()
.model("gpt-4")
.messages(List.of(
new Message("user", "Explain quantum computing")
))
.maxTokens(500)
.build();
ChatCompletionResponse response = client.createChatCompletion(request);
System.out.println(response.getChoices().get(0).getMessage().getContent());Direct RESTful API Calls
HTTPRequest Example
curl -X POST https://api.llmapi.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-d '{
"model": "gpt-4",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is the capital of France?"
}
],
"temperature": 0.7,
"max_tokens": 150
}'Response Format
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "gpt-4",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": "The capital of France is Paris."
},
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 20,
"completion_tokens": 8,
"total_tokens": 28
}
}Streaming Response Handling
Server-Sent Events (SSE)
const eventSource = new EventSource(
'https://api.llmapi.com/v1/stream'
);
eventSource.onmessage = (event) => {
const data = JSON.parse(event.data);
if (data.done) {
eventSource.close();
} else {
console.log(data.content);
}
};WebSocket Connection
const ws = new WebSocket(
'wss://api.llmapi.com/v1/ws'
);
ws.on('open', () => {
ws.send(JSON.stringify({
type: 'chat',
messages: [...],
stream: true
}));
});
ws.on('message', (data) => {
const chunk = JSON.parse(data);
process.stdout.write(chunk.content);
});Error HandlingBest Practices
Common Error Code Handling
API key invalid or expired
if (error.status === 401) {
// Refresh token or prompt user to re-login
await refreshApiKey();
}Request frequency exceeds limit
if (error.status === 429) {
const retryAfter = error.headers['retry-after'];
await sleep(retryAfter * 1000);
return retry(request);
}Service temporarily unavailable
if (error.status === 503) {
// Implement exponential backoff retry
return exponentialBackoff(request);
}Advanced Integration Techniques
Connection Pool Optimization
const pool = new ConnectionPool({
maxConnections: 10,
maxIdleTime: 30000,
keepAlive: true
});
const client = new LLMAPIClient({
apiKey: API_KEY,
httpClient: pool.getClient()
});Request Retry Mechanism
async function callWithRetry(fn, maxRetries = 3) {
for (let i = 0; i < maxRetries; i++) {
try {
return await fn();
} catch (error) {
if (i === maxRetries - 1) throw error;
await sleep(Math.pow(2, i) * 1000);
}
}
}Production Environment Deployment Checklist
- Environment Variable Management
Use key management service to store API keys
- Monitoring and Logging
Set up API call monitoring and error tracking
- Caching Strategy
Implement response caching to reduce API calls
- Failover
Configure backup API endpoints and degradation strategy
- Cost Control
Set usage alerts and budget limits
Common Integration Scenarios
Chatbot
Integrate into customer service systems to provide intelligent dialogue
Content Generation
Automated creation of marketing copy and articles
Smart Search
Semantic search and Q&A systems
Start Integrating LLM API
Get your API key immediately, integrate powerful AI capabilities into your applications, and start your intelligent transformation journey.
Get API Key