LLM Training Infrastructure: Building an AI Training Factory
Training large-scale language models requires powerful compute infrastructure. From hardware selection to software optimization, every step impacts training efficiency and cost. This article explores how to build an efficient training system.
Hardware Infrastructure
🖥️ GPU Selection
- • NVIDIA A100/H100
- • AMD MI250X
- • Google TPU v4
- • Domestic chip solutions
🔗 Network Architecture
- • InfiniBand high-speed interconnect
- • NVLink GPU interconnect
- • RoCE over Ethernet
- • Topology optimization
💾 Storage Systems
- • Parallel file systems
- • High-speed SSD arrays
- • Distributed object storage
- • Caching layer design
❄️ Cooling and Power
- • Liquid cooling system design
- • Power redundancy
- • PUE optimization
- • Data center planning
GPU Cluster Architecture
Typical Training Cluster Configurations
| Scale | # of GPUs | Compute (PFLOPS) | Memory (TB) | Model Size |
|---|---|---|---|---|
| Small cluster | 8–16 GPUs | 2.5–5 | 0.64–1.28 | 7B parameters |
| Medium cluster | 64–256 GPUs | 20–80 | 5–20 | 70B parameters |
| Large cluster | 1024+ GPUs | 300+ | 80+ | 175B+ parameters |
Cluster Topology Design
# DGX SuperPOD architecture example
class GPUClusterTopology:
def __init__(self):
self.compute_nodes = {
'dgx_a100': {
'gpus_per_node': 8,
'gpu_memory': '80GB',
'cpu_cores': 128,
'system_memory': '2TB',
'nvlink_bandwidth': '600GB/s',
'network': '8x200Gb InfiniBand'
}
}
def calculate_cluster_specs(self, num_nodes):
"""Calculate cluster specs"""
specs = {
'total_gpus': num_nodes * 8,
'total_gpu_memory': num_nodes * 8 * 80, # GB
'total_compute': num_nodes * 8 * 312, # TFLOPS
'interconnect_bandwidth': num_nodes * 1.6 # TB/s
}
# Network topology
if num_nodes <= 16:
specs['topology'] = 'fat-tree'
else:
specs['topology'] = 'dragonfly+'
return specs
def optimize_placement(self, model_size, batch_size):
"""Optimize task placement"""
# Parallelism strategy
parallel_config = {
'data_parallel': self.calculate_dp_groups(),
'tensor_parallel': self.calculate_tp_groups(),
'pipeline_parallel': self.calculate_pp_stages()
}
return parallel_configDistributed Training Frameworks
Parallel Training Strategies
📊 Data Parallelism
# PyTorch DDP
model = DistributedDataParallel(
model,
device_ids=[local_rank],
output_device=local_rank
)- • Full model on each GPU
- • Shard data across GPUs
- • Synchronize gradients
🔀 Tensor Parallelism
# Megatron-LM
tensor_parallel_size = 8
model = TensorParallelModel(
base_model,
tp_size=tensor_parallel_size
)- • Intra-layer parallelization
- • Shard matrix operations
- • Reduce memory usage
🔗 Pipeline Parallelism
# Pipeline Parallel
pipeline_stages = 4
model = PipelineParallel(
model,
num_stages=pipeline_stages
)- • Split model by layers
- • Pipeline execution
- • Improve GPU utilization
3D Parallelism Combinations
# 3D Parallelism configuration
parallel_config = {
'data_parallel_size': 8, # DP dimension
'tensor_parallel_size': 4, # TP dimension
'pipeline_parallel_size': 2, # PP dimension
'total_gpus': 64 # 8 * 4 * 2
}
# Compute model shard per GPU
model_params_per_gpu = total_params / (tp_size * pp_size)Training Optimization Techniques
Performance Optimization Strategies
⚡ Mixed Precision Training
# Automatic Mixed Precision
from torch.cuda.amp import autocast, GradScaler
scaler = GradScaler()
with autocast():
output = model(input)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()Advantages:
- • 2–3× training speedup
- • 50% lower memory usage
- • Maintain model accuracy
💾 ZeRO Optimizer
ZeRO-1
Optimizer state sharding
ZeRO-2
+ Gradient sharding
ZeRO-3
+ Parameter sharding
🚀 Communication Optimization
- • Gradient compression to reduce traffic
- • Overlap communication with compute
- • NCCL optimizations for collectives
- • Topology awareness for routing
Monitoring and Debugging
Training Monitoring System
Key Monitoring Metrics
🔍 Performance
- • GPU utilization (target: > 95%)
- • Memory usage
- • Communication bandwidth usage
- • FLOPS efficiency
📊 Training
- • Loss curves
- • Gradient norms
- • Learning rate schedule
- • Validation performance
# TensorBoard monitoring tensorboard --logdir=./logs --port=6006 # NVIDIA Nsight Systems performance profiling nsys profile -t cuda,nvtx,osrt,cudnn -o profile_report python train.py
Cost Optimization
Training Cost Analysis
| Model Size | GPU hours | Cloud cost | Power cost | Total cost |
|---|---|---|---|---|
| 7B parameters | 2,000 | $6,000 | $800 | $6,800 |
| 70B parameters | 50,000 | $150,000 | $20,000 | $170,000 |
| 175B parameters | 300,000 | $900,000 | $120,000 | $1,020,000 |
💰 Cost Optimization Strategies
- • Use spot instances to save up to 70%
- • Hybrid cloud strategy: on-prem + public cloud
- • Resume from checkpoints to avoid retraining
- • Parameter-efficient fine-tuning to reduce training
Best Practices
LLM Training Lessons Learned
✅ Pre-training Preparation
- • Data quality checks and cleaning
- • Small-scale experiments for validation
- • Parallelism strategy optimization
- • Deploy monitoring stack
🚀 During Training
- • Dynamically adjust learning rate
- • Save checkpoints frequently
- • Monitor anomaly indicators
- • Elastic scale up/down
Build Your AI Training Platform
Professional training infrastructure solutions to help you train large-scale AI models efficiently.
Contact Us