Production Deployment: Run AI Applications Reliably
Deploying LLM applications to production requires careful consideration of performance, availability, and security. This guide helps you build a stable, efficient, and scalable AI service architecture.
Architecture Design Principles
🏗️ High Availability
- • Multi-region/active-active deployment
- • Automatic failover
- • Load balancing
- • Service degradation
⚡ Performance Optimization
- • Model acceleration
- • Caching strategies
- • Asynchronous processing
- • Resource pooling
🔒 Security Protection
- • API authentication
- • Data encryption
- • DDoS protection
- • Audit logs
📊 Monitoring and Operations
- • Real-time monitoring
- • Alerting system
- • Log analysis
- • Automated operations
Complete Deployment Architecture
Production-grade AI Service Architecture
# Kubernetes deployment configuration
apiVersion: v1
kind: Namespace
metadata:
name: ai-service
---
# ConfigMap configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: ai-service-config
namespace: ai-service
data:
MODEL_NAME: "llama-70b"
MAX_BATCH_SIZE: "32"
MAX_SEQUENCE_LENGTH: "4096"
GPU_MEMORY_FRACTION: "0.9"
---
# Deployment configuration
apiVersion: apps/v1
kind: Deployment
metadata:
name: ai-inference-deployment
namespace: ai-service
spec:
replicas: 3
selector:
matchLabels:
app: ai-inference
template:
metadata:
labels:
app: ai-inference
spec:
nodeSelector:
nvidia.com/gpu: "true"
containers:
- name: inference-server
image: your-registry/ai-inference:v1.0.0
resources:
limits:
nvidia.com/gpu: 1
memory: "32Gi"
cpu: "16"
requests:
nvidia.com/gpu: 1
memory: "24Gi"
cpu: "8"
ports:
- containerPort: 8080
name: http
- containerPort: 8081
name: grpc
- containerPort: 9090
name: metrics
env:
- name: MODEL_PATH
value: "/models/llama-70b"
- name: LOG_LEVEL
value: "INFO"
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 300
periodSeconds: 30
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 60
periodSeconds: 10
volumeMounts:
- name: model-storage
mountPath: /models
- name: cache-volume
mountPath: /cache
volumes:
- name: model-storage
persistentVolumeClaim:
claimName: model-pvc
- name: cache-volume
emptyDir:
medium: Memory
sizeLimit: 10Gi
---
# Service configuration
apiVersion: v1
kind: Service
metadata:
name: ai-inference-service
namespace: ai-service
spec:
selector:
app: ai-inference
ports:
- name: http
port: 80
targetPort: 8080
- name: grpc
port: 9000
targetPort: 8081
type: LoadBalancer
---
# HPA autoscaling
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: ai-inference-hpa
namespace: ai-service
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: ai-inference-deployment
minReplicas: 3
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: Pods
pods:
metric:
name: inference_queue_size
target:
type: AverageValue
averageValue: "30"Load Balancing and API Gateway
API Gateway Configuration
# nginx.conf
upstream ai_backend {
least_conn;
server ai-node1:8080 max_fails=3 fail_timeout=30s;
server ai-node2:8080 max_fails=3 fail_timeout=30s;
server ai-node3:8080 max_fails=3 fail_timeout=30s;
keepalive 32;
keepalive_requests 100;
keepalive_timeout 60s;
}
# Rate limiting configuration
limit_req_zone $binary_remote_addr zone=api_limit:10m rate=10r/s;
limit_req_zone $http_api_key zone=key_limit:10m rate=100r/s;
server {
listen 443 ssl http2;
server_name api.your-domain.com;
# SSL configuration
ssl_certificate /etc/nginx/ssl/cert.pem;
ssl_certificate_key /etc/nginx/ssl/key.pem;
ssl_protocols TLSv1.2 TLSv1.3;
# Security headers
add_header X-Content-Type-Options nosniff;
add_header X-Frame-Options DENY;
add_header X-XSS-Protection "1; mode=block";
location /v1/chat/completions {
# Rate limiting
limit_req zone=api_limit burst=20 nodelay;
limit_req zone=key_limit burst=100 nodelay;
# Authentication
auth_request /auth;
# Proxy configuration
proxy_pass http://ai_backend;
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
# Timeout configuration
proxy_connect_timeout 5s;
proxy_send_timeout 300s;
proxy_read_timeout 300s;
# Buffering configuration
proxy_buffering off;
proxy_request_buffering off;
}
location /auth {
internal;
proxy_pass http://auth-service:3000/validate;
proxy_pass_request_body off;
proxy_set_header Content-Length "";
proxy_set_header X-Original-URI $request_uri;
proxy_set_header X-Api-Key $http_authorization;
}
}Monitoring and Alerting
Prometheus + Grafana Monitoring
Key Monitoring Metrics
# Prometheus rules
groups:
- name: ai_service_alerts
rules:
- alert: HighLatency
expr: |
histogram_quantile(0.95,
rate(http_request_duration_seconds_bucket[5m])
) > 2
for: 5m
annotations:
summary: "P95 latency > 2s"
- alert: HighErrorRate
expr: |
rate(http_requests_total{status=~"5.."}[5m])
/ rate(http_requests_total[5m]) > 0.05
for: 5m
annotations:
summary: "Error rate > 5%"
- alert: GPUMemoryHigh
expr: |
nvidia_gpu_memory_used_bytes
/ nvidia_gpu_memory_total_bytes > 0.9
for: 10m
annotations:
summary: "GPU memory usage > 90%"Custom Metrics
# Python metrics collection
from prometheus_client import (
Counter, Histogram, Gauge
)
# Request counter
request_count = Counter(
'ai_requests_total',
'Total AI requests',
['model', 'status']
)
# Latency histogram
request_latency = Histogram(
'ai_request_duration_seconds',
'Request latency',
['model', 'operation']
)
# Token usage
token_usage = Counter(
'ai_tokens_total',
'Total tokens used',
['model', 'type']
)
# Queue size
queue_size = Gauge(
'ai_queue_size',
'Current queue size'
)Failure Recovery Strategies
Disaster Recovery and Backup Solutions
🔄 Automatic Failover
# Health check script
#!/bin/bash
check_service_health() {
response=$(curl -s -o /dev/null -w "%{http_code}" http://localhost:8080/health)
if [ $response -ne 200 ]; then
# Trigger failover
kubectl delete pod $POD_NAME
# Send alert
send_alert "Service unhealthy, triggering failover"
# Update load balancer
update_lb_backend
fi
}
# Run periodically
while true; do
check_service_health
sleep 30
done💾 Data Backup Strategy
Real-time backup
- • Database primary-secondary replication
- • Model version management
- • Configuration auto-backup
Recovery strategy
- • RTO: < 5 minutes
- • RPO: < 1 minute
- • Automatic rollback mechanism
Performance Optimization Practices
Optimization Tips
🚀 Frontend Optimization
- Connection reuse: use HTTP/2 to maintain keep-alive
- Request coalescing: batch requests to reduce round trips
- Local caching: cache common responses
⚡ Backend Optimization
- Model quantization: INT8/FP16 for faster inference
- Batching: optimize dynamic batch size
- GPU sharing: reuse GPUs across multiple models
Cost Control
Cloud Cost Optimization
| Optimization Measure | Cost Savings | Difficulty | Applicable Scenarios |
|---|---|---|---|
| Spot instances | 70% | Medium | Batch workloads |
| Reserved instances | 40% | Low | Steady workloads |
| Autoscaling | 30% | Medium | Bursting/variable workloads |
| Multi-cloud deployment | 25% | High | Large-scale deployments |
Deployment Checklist
Pre-launch Must-check Items
✅ Feature Testing
- □ API functional testing completed
- □ Load and stress testing passed
- □ Compatibility testing passed
- □ No high-risk vulnerabilities in security scans
🚀 Operations Readiness
- □ Monitoring and alerting configured
- □ Backup and restore tested
- □ Operations documentation updated
- □ Incident response plan defined
Build Production-grade AI Services
Master these deployment techniques to keep your AI applications stable and efficient in production.
Get Support